Transforming TCP sockets to MQTT with Go





In the last post we’ve created one proxy to upgrade one legacy application that sends raw TCP sockets to a HTTP server without changing the original application.

Now we’re going to do the same but instead sending HTTP request we’re going to connect to a MQTT broker. Probably try to change the legacy application to connect to a MQTT broker can be a nightmare but with with this approach is pretty straightforward.

The idea is the same. We’re going to send our TCP sockets to localhost. Then we’re going to build a go client that reads the TCP sockets and send the information to the MQTT broker.

We’re going to use Mosquitto as MQTT broker. We can set up easily with docker:

version: '2'

services:
  mosquitto:
    image: eclipse-mosquitto
    hostname: mosquitto
    container_name: mosquitto
    build:
      context: .docker/mosquitto
      dockerfile: Dockerfile
    expose:
      - "1883"
      - "9001"
    ports:
      - "1883:1883"
      - "9001:9001"

We can also set up our Mosquitto server with user and password with mosquitto.conf and users.txt. For this example we’re going to use the credentials: username:password

username:$6$6jOr4vVqaKxisTls$4KVYh8NBZdP+z4S/YbuoSHKlJ+5F1DxiE7XtWWXVHQ+7PlCI+b6LhqSbj8lL45HnGlo4D5t0AVFYrYGjb5lTxg==

Our Go program is very similar than the http version:

package main

import (
	"bufio"
	"encoding/json"
	"flag"
	mqtt "github.com/eclipse/paho.mqtt.golang"
	"log"
	"net"
	"os"
	"strings"
	"time"
)

func main() {
	port, closeConnection, topic, broker := parseFlags()
	openSocket(*port, *closeConnection, *topic, *broker, onMessage)
}

func openSocket(port string, closeConnection bool, topic string, broker string, onMessage func(url string, topic string, buffer string)) {
	PORT := "localhost:" + port
	l, err := net.Listen("tcp4", PORT)
	log.Printf("Serving %s\n", l.Addr().String())
	if err != nil {
		log.Fatalln(err)
	}
	defer l.Close()

	for {
		c, err := l.Accept()
		if err != nil {
			log.Fatalln(err)
		}
		go handleConnection(c, closeConnection, topic, broker, onMessage)
	}
}

func createClientOptions(url string) *mqtt.ClientOptions {
	opts := mqtt.NewClientOptions()
	opts.AddBroker(url)
	opts.SetUsername(os.Getenv("MQTT_USERNAME"))
	opts.SetPassword(os.Getenv("MQTT_PASSWORD"))
	return opts
}

func connect(url string) mqtt.Client {
	opts := createClientOptions(url)
	client := mqtt.NewClient(opts)
	token := client.Connect()
	for !token.WaitTimeout(3 * time.Second) {
	}
	if err := token.Error(); err != nil {
		log.Fatal(err)
	}
	return client
}

func onMessage(url string, topic string, buffer string) {
	client := connect(url)
	client.Publish(topic, 0, false, buffer)
}

func parseFlags() (*string, *bool, *string, *string) {
	port := flag.String("port", "7777", "port number")
	closeConnection := flag.Bool("close", true, "Close connection")
	topic := flag.String("topic", "topic", "mqtt topic")
	broker := flag.String("broker", "tcp://localhost:1883", "mqtt topic")
	flag.Parse()

	return port, closeConnection, topic, broker
}

func handleConnection(c net.Conn, closeConnection bool, topic string, broker string, onMessage func(url string, topic string, buffer string)) {
	log.Printf("Accepted connection from %s\n", c.RemoteAddr().String())
	for {
		ip, port, err := net.SplitHostPort(c.RemoteAddr().String())
		netData, err := bufio.NewReader(c).ReadString('\n')
		if err != nil {
			log.Println(err)
		}

		message := map[string]interface{}{
			"body":   strings.TrimSpace(netData),
			"ipFrom": ip,
			"port":   port,
		}

		log.Printf("sending to topic %s message:%s\n", topic, message)
		bytesRepresentation, err := json.Marshal(message)
		if err != nil {
			log.Println(err)
		} else {
			onMessage(broker, topic, string(bytesRepresentation))
		}

		if closeConnection {
			c.Close()
			return
		}
	}
	c.Close()
}

And that’s all. Our legacy application can now speak MQTT without problems.

Source code available in my github

Advertisement

Playing with Docker, MQTT, Grafana, InfluxDB, Python and Arduino

I must admit this post is just an excuse to play with Grafana and InfluxDb. InfluxDB is a cool database especially designed to work with time series. Grafana is one open source tool for time series analytics. I want to build a simple prototype. The idea is:

  • One Arduino device (esp32) emits a MQTT event to a mosquitto server. I’ll use a potentiometer to emulate one sensor (Imagine here, for example, a temperature sensor instead of potentiometer). I’ve used this circuit before in another projects
  • One Python script will be listening to the MQTT event in my Raspberry Pi and it will persist the value to InfluxDB database
  • I will monitor the state of the time series given by the potentiometer with Grafana
  • I will create one alert in Grafana (for example when the average value within 10 seconds is above a threshold) and I will trigger a webhook when the alert changes its state
  • One microservice (a Python Flask server) will be listening to the webhook and it will emit a MQTT event depending on the state
  • Another Arduino device (one NodeMcu in this case) will be listening to this MQTT event and it will activate a LED. Red one if the alert is ON and green one if the alert is OFF

The server
As I said before we’ll need three servers:

  • MQTT server (mosquitto)
  • InfluxDB server
  • Grafana server

We’ll use Docker. I’ve got a Docker host running in a Raspberry Pi3. The Raspberry Pi is a ARM device so we need docker images for this architecture.

version: '2'

services:
  mosquitto:
    image: pascaldevink/rpi-mosquitto
    container_name: moquitto
    ports:
     - "9001:9001"
     - "1883:1883"
    restart: always
  
  influxdb:
    image: hypriot/rpi-influxdb
    container_name: influxdb
    restart: always
    environment:
     - INFLUXDB_INIT_PWD="password"
     - PRE_CREATE_DB="iot"
    ports:
     - "8083:8083"
     - "8086:8086"
    volumes:
     - ~/docker/rpi-influxdb/data:/data

  grafana:
    image: fg2it/grafana-armhf:v4.6.3
    container_name: grafana
    restart: always
    ports:
     - "3000:3000"
    volumes:
      - grafana-db:/var/lib/grafana
      - grafana-log:/var/log/grafana
      - grafana-conf:/etc/grafana

volumes:
  grafana-db:
    driver: local  
  grafana-log:
    driver: local
  grafana-conf:
    driver: local

ESP32
The Esp32 part is very simple. We only need to connect our potentiometer to the Esp32. The potentiometer has three pins: Gnd, Signal and Vcc. For signal we’ll use the pin 32.

We only need to configure our Wifi network, connect to our MQTT server and emit the potentiometer value within each loop.

#include <PubSubClient.h>
#include <WiFi.h>

const int potentiometerPin = 32;

// Wifi configuration
const char* ssid = "my_wifi_ssid";
const char* password = "my_wifi_password";

// MQTT configuration
const char* server = "192.168.1.111";
const char* topic = "/pot";
const char* clientName = "com.gonzalo123.esp32";

String payload;

WiFiClient wifiClient;
PubSubClient client(wifiClient);

void wifiConnect() {
  Serial.println();
  Serial.print("Connecting to ");
  Serial.println(ssid);

  WiFi.begin(ssid, password);

  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(".");
  }
  Serial.println("");
  Serial.print("WiFi connected.");
  Serial.print("IP address: ");
  Serial.println(WiFi.localIP());
}

void mqttReConnect() {
  while (!client.connected()) {
    Serial.print("Attempting MQTT connection...");
    if (client.connect(clientName)) {
      Serial.println("connected");
    } else {
      Serial.print("failed, rc=");
      Serial.print(client.state());
      Serial.println(" try again in 5 seconds");
      delay(5000);
    }
  }
}

void mqttEmit(String topic, String value)
{
  client.publish((char*) topic.c_str(), (char*) value.c_str());
}

void setup() {
  Serial.begin(115200);

  wifiConnect();
  client.setServer(server, 1883);
  delay(1500);
}

void loop() {
  if (!client.connected()) {
    mqttReConnect();
  }
  int current = (int) ((analogRead(potentiometerPin) * 100) / 4095);
  mqttEmit(topic, (String) current);
  delay(500);
}

Mqtt listener

The esp32 emits an event (“/pot”) with the value of the potentiometer. So we’re going to create a MQTT listener that listen to MQTT and persits the value to InfluxDB.

import paho.mqtt.client as mqtt
from influxdb import InfluxDBClient
import datetime
import logging


def persists(msg):
    current_time = datetime.datetime.utcnow().isoformat()
    json_body = [
        {
            "measurement": "pot",
            "tags": {},
            "time": current_time,
            "fields": {
                "value": int(msg.payload)
            }
        }
    ]
    logging.info(json_body)
    influx_client.write_points(json_body)


logging.basicConfig(level=logging.INFO)
influx_client = InfluxDBClient('docker', 8086, database='iot')
client = mqtt.Client()

client.on_connect = lambda self, mosq, obj, rc: self.subscribe("/pot")
client.on_message = lambda client, userdata, msg: persists(msg)

client.connect("docker", 1883, 60)

client.loop_forever()

Grafana
In grafana we need to do two things. First to create one datasource from our InfluxDB server. It’s pretty straightforward to it.

Finally we’ll create a dashboard. We only have one time-serie with the value of the potentiometer. I must admit that my dasboard has a lot things that I’ve created only for fun.

Thats the query that I’m using to plot the main graph

SELECT 
  last("value") FROM "pot" 
WHERE 
  time >= now() - 5m 
GROUP BY 
  time($interval) fill(previous)

Here we can see the dashboard

And here my alert configuration:

I’ve also created a notification channel with a webhook. Grafana will use this web hook to notify when the state of alert changes

Webhook listener
Grafana will emit a webhook, so we’ll need an REST endpoint to collect the webhook calls. I normally use PHP/Lumen to create REST servers but in this project I’ll use Python and Flask.

We need to handle HTTP Basic Auth and emmit a MQTT event. MQTT is a very simple protocol but it has one very nice feature that fits like hat fits like a glove here. Le me explain it:

Imagine that we’ve got our system up and running and the state is “ok”. Now we connect one device (for example one big red/green lights). Since the “ok” event was fired before we connect the lights, our green light will not be switch on. We need to wait util “alert” event if we want to see any light. That’s not cool.

MQTT allows us to “retain” messages. That means that we can emit messages with “retain” flag to one topic and when we connect one device later to this topic, it will receive the message. Here it’s exactly what we need.

from flask import Flask
from flask import request
from flask_httpauth import HTTPBasicAuth
import paho.mqtt.client as mqtt
import json

client = mqtt.Client()

app = Flask(__name__)
auth = HTTPBasicAuth()

# http basic auth credentials
users = {
    "user": "password"
}


@auth.get_password
def get_pw(username):
    if username in users:
        return users.get(username)
    return None


@app.route('/alert', methods=['POST'])
@auth.login_required
def alert():
    client.connect("docker", 1883, 60)
    data = json.loads(request.data.decode('utf-8'))
    if data['state'] == 'alerting':
        client.publish(topic="/alert", payload="1", retain=True)
    elif data['state'] == 'ok':
        client.publish(topic="/alert", payload="0", retain=True)

    client.disconnect()

    return "ok"


if __name__ == "__main__":
    app.run(host='0.0.0.0')

Nodemcu

Finally the Nodemcu. This part is similar than the esp32 one. Our leds are in pins 4 and 5. We also need to configure the Wifi and connect to to MQTT server. Nodemcu and esp32 are similar devices but not the same. For example we need to use different libraries to connect to the wifi.

This device will be listening to the MQTT event and trigger on led or another depending on the state

#include <PubSubClient.h>
#include <ESP8266WiFi.h>

const int ledRed = 4;
const int ledGreen = 5;

// Wifi configuration
const char* ssid = "my_wifi_ssid";
const char* password = "my_wifi_password";

// mqtt configuration
const char* server = "192.168.1.111";
const char* topic = "/alert";
const char* clientName = "com.gonzalo123.nodemcu";

int value;
int percent;
String payload;

WiFiClient wifiClient;
PubSubClient client(wifiClient);

void wifiConnect() {
  Serial.println();
  Serial.print("Connecting to ");
  Serial.println(ssid);

  WiFi.begin(ssid, password);

  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(".");
  }
  Serial.println("");
  Serial.print("WiFi connected.");
  Serial.print("IP address: ");
  Serial.println(WiFi.localIP());
}

void mqttReConnect() {
  while (!client.connected()) {
    Serial.print("Attempting MQTT connection...");
    if (client.connect(clientName)) {
      Serial.println("connected");
      client.subscribe(topic);
    } else {
      Serial.print("failed, rc=");
      Serial.print(client.state());
      Serial.println(" try again in 5 seconds");
      delay(5000);
    }
  }
}

void callback(char* topic, byte* payload, unsigned int length) {

  Serial.print("Message arrived [");
  Serial.print(topic);

  String data;
  for (int i = 0; i < length; i++) {
    data += (char)payload[i];
  }
  cleanLeds();
  int value = data.toInt();
  switch (value)  {
    case 1:
      digitalWrite(ledRed, HIGH);
      break;
    case 0:
      digitalWrite(ledGreen, HIGH);
      break;
  }
  Serial.print("] value:");
  Serial.println((int) value);
}

void cleanLeds() {
  digitalWrite(ledRed, LOW);
  digitalWrite(ledGreen, LOW);
}

void setup() {
  Serial.begin(9600);
  pinMode(ledRed, OUTPUT);
  pinMode(ledGreen, OUTPUT);
  cleanLeds();
  Serial.println("start");

  wifiConnect();
  client.setServer(server, 1883);
  client.setCallback(callback);

  delay(1500);
}

void loop() {
  Serial.print(".");
  if (!client.connected()) {
    mqttReConnect();
  }

  client.loop();
  delay(500);
}

Here you can see the working prototype in action

And here the source code

Opencv and esp32 experiment. Moving a servo with my face alignment

One saturday morning I was having a breakfast and I discovered face_recognition project. I started to play with the opencv example. I put my picture and, Wow! It works like a charm. It’s pretty straightforward to detect my face and also I can obtain the face landmarks. One of the landmark that I can get is the nose tip. Playing with this script I realized that with the nose tip I can determine the position of the face. I can see if my face is align to the center or if I move it to one side. As well as I have a new iot device (one ESP32) I wanted to do something with it. For example control a servo (SG90) and moving it from left to right depending on my face position.

First we have the main python script. With this script I detect my face, the nose tip and the position of my face. With this position I will emit an event to a mqtt broker (a mosquitto server running on my laptop).

import face_recognition
import cv2
import numpy as np
import math
import paho.mqtt.client as mqtt

video_capture = cv2.VideoCapture(0)

gonzalo_image = face_recognition.load_image_file("gonzalo.png")
gonzalo_face_encoding = face_recognition.face_encodings(gonzalo_image)[0]

known_face_encodings = [
    gonzalo_face_encoding
]
known_face_names = [
    "Gonzalo"
]

RED = (0, 0, 255)
GREEN = (0, 255, 0)
BLUE = (255, 0, 0)

face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
status = ''
labelColor = GREEN

client = mqtt.Client()
client.connect("localhost", 1883, 60)

while True:
    ret, frame = video_capture.read()

    # Resize frame of video to 1/4 size for faster face recognition processing
    small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

    # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
    rgb_small_frame = small_frame[:, :, ::-1]

    face_locations = face_recognition.face_locations(rgb_small_frame)
    face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
    face_landmarks_list = face_recognition.face_landmarks(rgb_small_frame, face_locations)

    face_names = []
    for face_encoding, face_landmarks in zip(face_encodings, face_landmarks_list):
        matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
        name = "Unknown"

        if True in matches:
            first_match_index = matches.index(True)
            name = known_face_names[first_match_index]

            nose_tip = face_landmarks['nose_tip']
            maxLandmark = max(nose_tip)
            minLandmark = min(nose_tip)

            diff = math.fabs(maxLandmark[1] - minLandmark[1])
            if diff < 2:
                status = "center"
                labelColor = BLUE
                client.publish("/face/{}/center".format(name), "1")
            elif maxLandmark[1] > minLandmark[1]:
                status = ">>>>"
                labelColor = RED
                client.publish("/face/{}/left".format(name), "1")
            else:
                status = "<<<<"
                client.publish("/face/{}/right".format(name), "1")
                labelColor = RED

            shape = np.array(face_landmarks['nose_bridge'], np.int32)
            cv2.polylines(frame, [shape.reshape((-1, 1, 2)) * 4], True, (0, 255, 255))
            cv2.fillPoly(frame, [shape.reshape((-1, 1, 2)) * 4], GREEN)

        face_names.append("{} {}".format(name, status))

    for (top, right, bottom, left), name in zip(face_locations, face_names):
        # Scale back up face locations since the frame we detected in was scaled to 1/4 size
        top *= 4
        right *= 4
        bottom *= 4
        left *= 4

        if 'Unknown' not in name.split(' '):
            cv2.rectangle(frame, (left, top), (right, bottom), labelColor, 2)
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), labelColor, cv2.FILLED)
            cv2.putText(frame, name, (left + 6, bottom - 6), cv2.FONT_HERSHEY_DUPLEX, 1.0, (255, 255, 255), 1)
        else:
            cv2.rectangle(frame, (left, top), (right, bottom), BLUE, 2)

    cv2.imshow('Video', frame)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

video_capture.release()
cv2.destroyAllWindows()

Now another Python script will be listening to mqtt events and it will trigger one event with the position of the servo. I know that this second Python script maybe is unnecessary. We can move its logic to esp32 and main opencv script, but I was playing with mqtt and I wanted to decouple it a little bit.

import paho.mqtt.client as mqtt

class Iot:
    _state = None
    _client = None
    _dict = {
        'left': 0,
        'center': 1,
        'right': 2
    }

    def __init__(self, client):
        self._client = client

    def emit(self, name, event):
        if event != self._state:
            self._state = event
            self._client.publish("/servo", self._dict[event])
            print("emit /servo envent with value {} - {}".format(self._dict[event], name))


def on_message(topic, iot):
    data = topic.split("/")
    name = data[2]
    action = data[3]
    iot.emit(name, action)


client = mqtt.Client()
iot = Iot(client)

client.on_connect = lambda self, mosq, obj, rc: self.subscribe("/face/#")
client.on_message = lambda client, userdata, msg: on_message(msg.topic, iot)

client.connect("localhost", 1883, 60)
client.loop_forever()

And finally the ESP32. Here will connect to my wifi and to my mqtt broker.

#include <WiFi.h>
#include <PubSubClient.h>

#define LED0 17
#define LED1 18
#define LED2 19
#define SERVO_PIN 5

// wifi configuration
const char* ssid = "my_ssid";
const char* password = "my_wifi_password";
// mqtt configuration
const char* server = "192.168.1.111"; // mqtt broker ip
const char* topic = "/servo";
const char* clientName = "com.gonzalo123.esp32";

int channel = 1;
int hz = 50;
int depth = 16;

WiFiClient wifiClient;
PubSubClient client(wifiClient);

void wifiConnect() {
  Serial.print("Connecting to ");
  Serial.println(ssid);

  WiFi.begin(ssid, password);

  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print("*");
  }

  Serial.print("WiFi connected: ");
  Serial.println(WiFi.localIP());
}

void mqttReConnect() {
  while (!client.connected()) {
    Serial.print("Attempting MQTT connection...");
    if (client.connect(clientName)) {
      Serial.println("connected");
      client.subscribe(topic);
    } else {
      Serial.print("failed, rc=");
      Serial.print(client.state());
      Serial.println(" try again in 5 seconds");
      delay(5000);
    }
  }
}

void callback(char* topic, byte* payload, unsigned int length) {
  Serial.print("Message arrived [");
  Serial.print(topic);

  String data;
  for (int i = 0; i < length; i++) {
    data += (char)payload[i];
  }

  int value = data.toInt();
  cleanLeds();
  switch (value)  {
    case 0:
      ledcWrite(1, 3400);
      digitalWrite(LED0, HIGH);
      break;
    case 1:
      ledcWrite(1, 4900);
      digitalWrite(LED1, HIGH);
      break;
    case 2:
      ledcWrite(1, 6400);
      digitalWrite(LED2, HIGH);
      break;
  }
  Serial.print("] value:");
  Serial.println((int) value);
}

void cleanLeds() {
  digitalWrite(LED0, LOW);
  digitalWrite(LED1, LOW);
  digitalWrite(LED2, LOW);
}

void setup() {
  Serial.begin(115200);

  ledcSetup(channel, hz, depth);
  ledcAttachPin(SERVO_PIN, channel);

  pinMode(LED0, OUTPUT);
  pinMode(LED1, OUTPUT);
  pinMode(LED2, OUTPUT);
  cleanLeds();
  wifiConnect();
  client.setServer(server, 1883);
  client.setCallback(callback);

  delay(1500);
}

void loop()
{
  if (!client.connected()) {
    mqttReConnect();
  }

  client.loop();
  delay(100);
}

Here a video with the working prototype in action

The source code is available in my github account.

Pomodoro with ESP32. One “The Melee – Side by side” project

Last weekend there was a great event called The Melee – Side by side (Many thanks to @ojoven and @diversius).

The event was one kind of Hackathon where a group of people meet together one day, to share our side projects and to work together (yes. We also have a lunch and beers also :). The format of the event is just a copy of the event that our colleagues from Bilbao called “El Comité“.

@ibaiimaz spoke about one project to create one collaborative pomodoro where the people of one team can share their status and see the status of the rest of the team. When I heard pomodoro and status I immediately thought in one servo moving a flag and some LEDs turning on and off. We had a project. @penniath and @tatai also joined us. We also had a team.

We had a project and we also had a deadline. We must show a working prototype at the end of the day. That means that we didn’t have too many time. First we decided the mockup of the project, reducing the initial scope (more ambitious) to fit it within our time slot. We discuss intensely for 10 minutes and finally we describe an ultra detailed blueprint. That’s the full blueprint of the project:

It was time to start working.

@penniath and @tatai worked in the Backend. It must be the responsible of the pomodoro timers, listen to MQTT events and create an API for the frontend. The backend also must provide a WebSockets interface to allow real time events within the frontend. They decided to use node and socket.io for the WebSockets. You can see the source code here.

@ibaiimaz started with the frontend. He decided to create an Angular web application listening to socket.io events to show the status of the pomodoro. You can see the source code here.

Finaly I worked with the hardware. I created a prototype with one ESP32, two RGB LEDs, one button, one servo and a couple of resistors.

That’s the source code.

#include <WiFi.h>
#include <PubSubClient.h>

int redPin_g = 19;
int greenPin_g = 17;
int bluePin_g = 18;

int redPin_i = 21;
int greenPin_i = 2;
int bluePin_i = 4;

#define SERVO_PIN 16

const int buttonPin = 15;
int buttonState = 0;

int channel = 1;
int hz = 50;
int depth = 16;

const char* ssid = "SSID";
const char* password = "password";
const char* server = "192.168.1.105";
const char* topic = "/pomodoro/+";
const char* clientName = "com.gonzalo123.esp32";

WiFiClient wifiClient;
PubSubClient client(wifiClient);

void wifiConnect() {
  Serial.print("Connecting to ");
  Serial.println(ssid);

  WiFi.begin(ssid, password);

  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print("*");
  }

  Serial.print("WiFi connected: ");
  Serial.println(WiFi.localIP());
}

void mqttReConnect() {
  while (!client.connected()) {
    Serial.print("Attempting MQTT connection...");
    if (client.connect(clientName)) {
      Serial.println("connected");
      client.subscribe(topic);
    } else {
      Serial.print("failed, rc=");
      Serial.print(client.state());
      Serial.println(" try again in 5 seconds");
      delay(5000);
    }
  }
}

void callback(char* topic, byte* payload, unsigned int length) {
  Serial.print("Message arrived [");
  Serial.print(topic);

  String data;
  for (int i = 0; i < length; i++) {
    data += (char)payload[i];
  }

  int value = data.toInt();

  if (strcmp(topic, "/pomodoro/gonzalo") == 0) {
    Serial.print("[gonzalo]");
    switch (value) {
      case 1:
        ledcWrite(1, 3400);
        setColor_g(0, 255, 0);
        break;
      case 2:
        setColor_g(255, 0, 0);
        break;
      case 3:
        ledcWrite(1, 6400);
        setColor_g(0, 0, 255);
        break;
    }
  } else {
    Serial.print("[ibai]");
    switch (value) {
      case 1:
        setColor_i(0, 255, 0);
        break;
      case 2:
        setColor_i(255, 0, 0);
        break;
      case 3:
        setColor_i(0, 0, 255);  // green
        break;
    }
  }

  Serial.print("] value:");
  Serial.println(data);
}

void setup()
{
  Serial.begin(115200);

  pinMode(buttonPin, INPUT_PULLUP);
  pinMode(redPin_g, OUTPUT);
  pinMode(greenPin_g, OUTPUT);
  pinMode(bluePin_g, OUTPUT);

  pinMode(redPin_i, OUTPUT);
  pinMode(greenPin_i, OUTPUT);
  pinMode(bluePin_i, OUTPUT);

  ledcSetup(channel, hz, depth);
  ledcAttachPin(SERVO_PIN, channel);
  wifiConnect();
  client.setServer(server, 1883);
  client.setCallback(callback);

  delay(1500);
}

void mqttEmit(String topic, String value)
{
  client.publish((char*) topic.c_str(), (char*) value.c_str());
}

void loop()
{
  if (!client.connected()) {
    mqttReConnect();
  }

  client.loop();

  buttonState = digitalRead(buttonPin);
  if (buttonState == HIGH) {
    mqttEmit("/start/gonzalo", (String) "3");
  }

  delay(200);
}

void setColor_i(int red, int green, int blue)
{
  digitalWrite(redPin_i, red);
  digitalWrite(greenPin_i, green);
  digitalWrite(bluePin_i, blue);
}

void setColor_g(int red, int green, int blue)
{
  digitalWrite(redPin_g, red);
  digitalWrite(greenPin_g, green);
  digitalWrite(bluePin_g, blue);
}

The MQTT server (a mosquitto server) was initially running in my laptop but as well as I had one Raspberry Pi Zero also in my bag we decided to user the Pi Zero as a server and run mosquitto MQTT server with Raspbian. Everything is better with a Raspberry Pi. @tatai helped me to set up the server.

Here you can see the prototype in action

That’s the kind of side projects that I normally create alone but definitely it’s more fun to do it with other colleagues even it I need to wake up early one Saturday morning.

Source code of ESP32 here.

Playing with Raspberry Pi, Arduino, NodeMcu and MQTT

These days I’m playing with IoT. Today I want to use MQTT protocol to comunicate between different devices. First I’ve start a mqtt broker in my Laptop. For testing I’ll use mosquitto server. In production we can use RabbitMQ or even a 3party server such as iot.eclipse.org or even Amazon’s IoT service.

The idea is emit one value with one device, and listen this value whit the rest of devices and perform one action depending on that value. For example I will use one potentiometer connected to on NodeMcu micro controller.

This controller will connect to the mqtt broker and will emit the value of the potentiometer (reading the analog input) into one topic (called “potentiometer”). We can code our NodeMcu with Lua but I’m more confortable with C++ and Arduino IDE. First I need to connect to my Wifi and then connect to broker and start emmiting potentiometer’s values

#include <PubSubClient.h>
#include <ESP8266WiFi.h>

// Wifi configuration
const char* ssid = "MY_WIFI_SSID";
const char* password = "my_wifi_password";

// mqtt configuration
const char* server = "192.168.1.104";
const char* topic = "potentiometer";
const char* clientName = "com.gonzalo123.nodemcu";

int value;
int percent;
String payload;

WiFiClient wifiClient;
PubSubClient client(wifiClient);

void wifiConnect() {
  Serial.println();
  Serial.print("Connecting to ");
  Serial.println(ssid);

  WiFi.begin(ssid, password);

  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(".");
  }
  Serial.println("");
  Serial.print("WiFi connected.");
  Serial.print("IP address: ");
  Serial.println(WiFi.localIP());

  if (client.connect(clientName)) {
    Serial.print("Connected to MQTT broker at ");
    Serial.print(server);
    Serial.print(" as ");
    Serial.println(clientName);
    Serial.print("Topic is: ");
    Serial.println(topic);
  }
  else {
    Serial.println("MQTT connect failed");
    Serial.println("Will reset and try again...");
    abort();
  }
}

void mqttReConnect() {
  while (!client.connected()) {
    Serial.print("Attempting MQTT connection...");
    // Attempt to connect
    if (client.connect(clientName)) {
      Serial.println("connected");
      client.subscribe(topic);
    } else {
      Serial.print("failed, rc=");
      Serial.print(client.state());
      Serial.println(" try again in 5 seconds");
      delay(5000);
    }
  }
}

void setup() {
  Serial.begin(9600);
  client.setServer(server, 1883);
  wifiConnect();
  delay(10);
}

void loop() {
  value = analogRead(A0);
  percent = (int) ((value * 100) / 1010);
  payload = (String) percent;
  if (client.connected()) {
    if (client.publish(topic, (char*) payload.c_str())) {
      Serial.print("Publish ok (");
      Serial.print(payload);
      Serial.println(")");
    } else {
      Serial.println("Publish failed");
    }
  } else {
    mqttReConnect();
  }

  delay(200);
}

Now we will use another Arduino (with a ethernet shield).

We’ll move one servomotor depending to NodeMcu’s potentiomenter value. This Arduino only needs to listen to MQTT’s topic and move the servo.

#include <SPI.h>
#include <Servo.h>
#include <Ethernet.h>
#include <PubSubClient.h>

#define SERVO_CONTROL 9
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

Servo servo;
EthernetClient ethClient;

// mqtt configuration
const char* server = "192.168.1.104";
const char* topic = "potentiometer";
const char* clientName = "com.gonzalo123.arduino";

PubSubClient client(ethClient);

void callback(char* topic, byte* payload, unsigned int length) {
  Serial.print("Message arrived [");
  Serial.print(topic);
  Serial.print("] angle:");

  String data;
  for (int i = 0; i < length; i++) {
    data += (char)payload[i];
  }

  double angle = ((data.toInt() * 180) / 100);
  constrain(angle, 0, 180);
  servo.write((int) angle);
  Serial.println((int) angle);
}

void mqttReConnect() {
  while (!client.connected()) {
    Serial.print("Attempting MQTT connection...");
    // Attempt to connect
    if (client.connect(clientName)) {
      Serial.println("connected");
      client.subscribe(topic);
    } else {
      Serial.print("failed, rc=");
      Serial.print(client.state());
      Serial.println(" try again in 5 seconds");
      delay(5000);
    }
  }
}

void setup()
{
  Serial.begin(9600);
  client.setServer(server, 1883);
  client.setCallback(callback);
  servo.attach(SERVO_CONTROL);
  if (Ethernet.begin(mac) == 0) {
    Serial.println("Failed to configure Ethernet using DHCP");
  }

  delay(1500); // Allow the hardware to sort itself out
}

void loop()
{
  if (!client.connected()) {
    mqttReConnect();
  }
  client.loop();
}

Finally we’ll use one Raspberry Pi with a Sense Hat and we’ll display with its led matrix different colors and dots, depending on the NodeMcu’s value. In the same way than the Arduino script here we only need to listen to the broker’s topic and perform the actions with the sense hat. Now with Python

import paho.mqtt.client as mqtt
from sense_hat import SenseHat

sense = SenseHat()
sense.clear()
mqttServer = "192.168.1.104"

red = [255, 0, 0]
green = [0, 255, 0]
yellow = [255, 255, 0]
black = [0, 0, 0]

def on_connect(client, userdata, rc):
    print("Connected!")
    client.subscribe("potentiometer")

def on_message(client, userdata, msg):
    value = (64 * int(msg.payload)) / 100
    O = black
    if value < 21:
        X = red
    elif value < 42:
        X = yellow
    else:
        X = green

    sense.set_pixels(([X] * value) + ([O] * (64 - value)))

client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message

client.connect(mqttServer, 1883, 60)
client.loop_forever()

The hardware:

  • 1 Arduino Uno
  • 1 NodeMCU (V3)
  • 1 potentiometer
  • 1 Servo (SG90)
  • 1 Raspberry Pi 3 (with a Sense Hat)
    • Source code is available in my github.